Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(3): e17180, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465701

RESUMEN

Palearctic water frogs (genus Pelophylax) are an outstanding model in ecology and evolution, being widespread, speciose, either threatened or threatening to other species through biological invasions, and capable of siring hybrid offspring that escape the rules of sexual reproduction. Despite half a century of genetic research and hundreds of publications, the diversity, systematics and biogeography of Pelophylax still remain highly confusing, in no small part due to a lack of correspondence between studies. To provide a comprehensive overview, we gathered >13,000 sequences of barcoding genes from >1700 native and introduced localities and built multigene mitochondrial (~17 kb) and nuclear (~10 kb) phylogenies. We mapped all currently recognized taxa and their phylogeographic lineages (>40) to get a grasp on taxonomic issues, cyto-nuclear discordances, the genetic makeup of hybridogenetic hybrids, and the origins of introduced populations. Competing hypotheses for the molecular calibration were evaluated through plausibility tests, implementing a new approach relying on predictions from the anuran speciation continuum. Based on our timetree, we propose a new biogeographic paradigm for the Palearctic since the Paleogene, notably by attributing a prominent role to the dynamics of the Paratethys, a vast paleo-sea that extended over most of Europe. Furthermore, our results show that distinct marsh frog lineages from Eastern Europe, the Balkans, the Near East, and Central Asia (P. ridibundus ssp.) are naturally capable of inducing hybridogenesis with pool frogs (P. lessonae). We identified 14 alien lineages (mostly of P. ridibundus) over ~20 areas of invasions, especially in Western Europe, with genetic signatures disproportionally pointing to the Balkans and Anatolia as the regions of origins, in line with exporting records of the frog leg industry and the stocks of pet sellers. Pelophylax thus emerges as one of the most invasive amphibians worldwide, and deserves much higher conservation concern than currently given by the authorities fighting biological invasions.


Asunto(s)
Anuros , Ranidae , Animales , Anuros/genética , Europa (Continente) , Filogenia , Filogeografía
2.
Mol Phylogenet Evol ; 194: 108043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38382821

RESUMEN

European marbled newts come in two species that have abutting ranges. The northern species, Triturus marmoratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic differentiation of the group because morphological data show geographical variation and because the Iberian Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differentiated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.

3.
Glob Chang Biol ; 30(1): e17148, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273513

RESUMEN

Phenological responses to climate change frequently vary among trophic levels, which can result in increasing asynchrony between the peak energy requirements of consumers and the availability of resources. Migratory birds use multiple habitats with seasonal food resources along migration flyways. Spatially heterogeneous climate change could cause the phenology of food availability along the migration flyway to become desynchronized. Such heterogeneous shifts in food phenology could pose a challenge to migratory birds by reducing their opportunity for food availability along the migration path and consequently influencing their survival and reproduction. We develop a novel graph-based approach to quantify this problem and deploy it to evaluate the condition of the heterogeneous shifts in vegetation phenology for 16 migratory herbivorous waterfowl species in Asia. We show that climate change-induced heterogeneous shifts in vegetation phenology could cause a 12% loss of migration network integrity on average across all study species. Species that winter at relatively lower latitudes are subjected to a higher loss of integrity in their migration network. These findings highlight the susceptibility of migratory species to climate change. Our proposed methodological framework could be applied to migratory species in general to yield an accurate assessment of the exposure under climate change and help to identify actions for biodiversity conservation in the face of climate-related risks.


Asunto(s)
Migración Animal , Cambio Climático , Animales , Aves/fisiología , Ecosistema , Estaciones del Año
4.
Ecol Evol ; 13(9): e10442, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664506

RESUMEN

When two putatively cryptic species meet in nature, hybrid zone analysis can be used to estimate the extent of gene flow between them. Two recently recognized cryptic species of banded newt (genus Ommatotriton) are suspected to meet in parapatry in Anatolia, but a formal hybrid zone analysis has never been conducted. We sample populations throughout the range, with a focus on the supposed contact zone, and genotype them for 31 nuclear DNA SNP markers and mtDNA. We determine the degree of genetic admixture, introgression, and niche overlap. We reveal an extremely narrow hybrid zone, suggesting strong selection against hybrids, in line with species status. The hybrid zone does not appear to be positioned at an ecological barrier, and there is significant niche overlap. Therefore, the hybrid zone is best classified as a tension zone, maintained by intrinsic selection against hybrids. While the two banded newt species can evidently backcross, we see negligible introgression and the pattern is symmetric, which we interpret as supporting the fact that the hybrid zone has been practically stationary since its origin (while extensive hybrid zone movement has been suggested in other newt genera in the region). Our study illustrates the use of hybrid zone analysis to test cryptic species status.

5.
Mol Phylogenet Evol ; 183: 107783, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37044190

RESUMEN

The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide a comprehensive phylogeographic framework for the A. obstetricans complex, as well as a fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.


Asunto(s)
Anuros , ADN Mitocondrial , Humanos , Animales , Filogeografía , Filogenia , ADN Mitocondrial/genética , Anuros/genética , Genómica
6.
Mol Ecol ; 32(4): 867-880, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458894

RESUMEN

The major histocompatibility complex (MHC) genes are central to the adaptive immune response in vertebrates. Selection generally maintains high MHC variation because the spectrum of recognized pathogens depends on MHC polymorphism. Novel alleles favoured by selection originate by interallelic recombination or de novo mutations but may also be acquired by introgression from related species. However, the extent and prevalence of MHC introgression remain an open question. In this study, we tested for MHC introgression in six hybrid zones formed by six Triturus newt species. We sequenced and genotyped the polymorphic second exons of the MHC class I and II genes and compared their interspecific similarity at various distances from the centre of the hybrid zone. We found evidence for introgression of both MHC classes in the majority of examined hybrid zones, with support for a more substantial class I introgression. Furthermore, the overall MHC allele sharing outside of hybrid zones was elevated between pairs of Triturus species with abutting ranges, regardless of the phylogenetic distance between them. No effect of past hybrid zone movement on MHC allele sharing was found. Finally, using previously published genome-wide data, we demonstrated that MHC introgression was more extensive than genome-wide introgression, supporting its adaptive potential. Our study thus provides evidence for the prevalence of MHC introgression across multiple Triturus hybrid zones, indicating that MHC introgression between divergent hybridizing species may be widespread and adaptive.


Asunto(s)
Hibridación Genética , Triturus , Animales , Triturus/genética , Filogenia , Salamandridae/genética , Alelos
7.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210199, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35694750

RESUMEN

Supergenes offer spectacular examples of long-term balancing selection in nature, but their origin and maintenance remain a mystery. Reduced recombination between arrangements, a critical aspect of many supergenes, protects adaptive multi-trait phenotypes but can lead to mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One outcome is the formation of maladaptive balanced lethal systems, where only heterozygotes remain viable and reproduce. We investigated the conditions under which these different outcomes occur, assuming a scenario of introgression after divergence. We found that AOD aided the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism was easily destabilized by further mutation accumulation, which was often asymmetric, disrupting the quasi-equilibrium state. Mechanisms that accelerated degeneration tended to amplify asymmetric mutation accumulation between the supergene arrangements and vice-versa. As the evolution of balanced lethal systems requires symmetric degeneration of both arrangements, this leaves only restricted conditions for their evolution, namely small population sizes and low rates of gene conversion. The dichotomy between the persistence of polymorphism and degeneration of supergene arrangements likely underlies the rarity of balanced lethal systems in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Asunto(s)
Acumulación de Mutaciones , Polimorfismo Genético , Fenotipo
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210192, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35694757

RESUMEN

Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Evolución Molecular , Genes de Insecto , Genómica , Alas de Animales
9.
Mol Phylogenet Evol ; 167: 107361, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775056

RESUMEN

Technological developments now make it possible to employ many markers for many individuals in a phylogeographic setting, even for taxa with large and complex genomes such as salamanders. The banded newt (genus Ommatotriton) from the Near East has been proposed to contain three species (O. nesterovi, O. ophryticus and O. vittatus) with unclear phylogenetic relationships, apparently limited interspecific gene flow and deep intraspecific geographic mtDNA structure. We use parallel tagged amplicon sequencing to obtain 177 nuclear DNA markers for 35 banded newts sampled throughout the range. We determine population structure (with Bayesian clustering and principal component analysis), interspecific gene flow (by determining the distribution of species-diagnostic alleles) and phylogenetic relationships (by maximum likelihood inference of concatenated sequence data and based on a summary-coalescent approach). We confirm that the three proposed species are genetically distinct. A sister relationship between O. nesterovi and O. ophryticus is suggested. We find evidence for introgression between O. nesterovi and O. ophryticus, but this is geographically limited. Intraspecific structuring is extensive, with the only recognized banded newt subspecies, O. vittatus cilicensis, representing the most distinct lineage below the species level. While mtDNA mostly mirrors the pattern observed in nuclear DNA, all banded newt species show mito-nuclear discordance as well.


Asunto(s)
Flujo Génico , Filogenia , Salamandridae , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Estructuras Genéticas , Filogeografía , Salamandridae/clasificación , Salamandridae/genética , Análisis de Secuencia de ADN
10.
Evol Appl ; 14(12): 2784-2793, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34950229

RESUMEN

Deeply diverged yet hybridizing species provide a system to investigate the final stages of the speciation process. We study a hybridizing pair of salamander species-the morphologically and genetically drastically different newts Triturus cristatus and T. marmoratus-with a panel of 32 nuclear and mitochondrial genetic markers. Morphologically identified hybrids are mostly of the F1 generation and mothered by T. cristatus. The sex ratio of the F1 hybrid class is reciprocally skewed, with a preponderance of females in T. cristatus-mothered hybrids and males in T. marmoratus-mothered hybrids. This amounts to the Haldane effect operating in one direction of the cross. Deeper generation hybrids are occasionally produced, possibly including F1 hybrid × backcross hybrid offspring. Interspecific gene flow is low, yet skewed toward T. cristatus. This asymmetry may be caused by hybrid zone movement, with the superseding species being predisposed to introgression. The persisting gene flow between deeply differentiated species supports the notion that full genetic isolation may be selected against. Conversely, published morphological data suggest that introgressive hybridization is detrimental, with digital malformations occurring more frequently in the area of sympatry. Finally, to assist field identification, both within the area of natural range overlap and concerning anthropogenic introductions elsewhere, we document the phenotypical variation of two generations of hybrids compared with both parental species. We suggest that fluctuating range boundaries, ecological segregation, cytonuclear incompatibilities and hybrid breakdown through Bateson-Dobzhansky-Muller incompatibilities all contribute to species integrity, despite incomplete isolation during secondary contact.

11.
Mol Biol Evol ; 38(11): 5092-5106, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34375431

RESUMEN

Proteins encoded by antigen-processing genes (APGs) provide major histocompatibility complex (MHC) class I (MHC-I) with antigenic peptides. In mammals, polymorphic multigenic MHC-I family is served by monomorphic APGs, whereas in certain nonmammalian species both MHC-I and APGs are polymorphic and coevolve within stable haplotypes. Coevolution was suggested as an ancestral gnathostome feature, presumably enabling only a single highly expressed classical MHC-I gene. In this view coevolution, while optimizing some aspects of adaptive immunity, would also limit its flexibility by preventing the expansion of classical MHC-I into a multigene family. However, some nonmammalian taxa, such as salamanders, have multiple highly expressed MHC-I genes, suggesting either that coevolution is relaxed or that it does not prevent the establishment of multigene MHC-I. To distinguish between these two alternatives, we use salamanders (30 species from 16 genera representing six families) to test, within a comparative framework, a major prediction of the coevolution hypothesis: the positive correlation between MHC-I and APG diversity. We found that MHC-I diversity explained both within-individual and species-wide diversity of two APGs, TAP1 and TAP2, supporting their coevolution with MHC-I, whereas no consistent effect was detected for the other three APGs (PSMB8, PSMB9, and TAPBP). Our results imply that although coevolution occurs in salamanders, it does not preclude the expansion of the MHC-I gene family. Contrary to the previous suggestions, nonmammalian vertebrates thus may be able to accommodate diverse selection pressures with flexibility granted by rapid expansion or contraction of the MHC-I family, while retaining the benefits of coevolution between MHC-I and TAPs.


Asunto(s)
Presentación de Antígeno , Urodelos , Animales , Presentación de Antígeno/genética , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Mamíferos/genética , Familia de Multigenes , Urodelos/genética , Urodelos/metabolismo , Vertebrados/genética
13.
Curr Biol ; 31(3): R108-R109, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561403

RESUMEN

Ben Wielstra introduces the biology of hybrid zones where ranges of populations overlap, leading to production of hybrid offspring in these zones.


Asunto(s)
Hibridación Genética
14.
Genome Biol Evol ; 13(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33501944

RESUMEN

Proteins encoded by antigen-processing genes (APGs) prepare antigens for presentation by the major histocompatibility complex class I (MHC I) molecules. Coevolution between APGs and MHC I genes has been proposed as the ancestral gnathostome condition. The hypothesis predicts a single highly expressed MHC I gene and tight linkage between APGs and MHC I. In addition, APGs should evolve under positive selection, a consequence of the adaptive evolution in MHC I. The presence of multiple highly expressed MHC I genes in some teleosts, birds, and urodeles appears incompatible with the coevolution hypothesis. Here, we use urodele amphibians to test two key expectations derived from the coevolution hypothesis: 1) the linkage between APGs and MHC I was studied in Lissotriton newts and 2) the evidence for adaptive evolution in APGs was assessed using 42 urodele species comprising 21 genera from seven families. We demonstrated that five APGs (PSMB8, PSMB9, TAP1, TAP2, and TAPBP) are tightly linked (<0.5 cM) to MHC I. Although all APGs showed some codons under episodic positive selection, we did not find a pervasive signal of positive selection expected under the coevolution hypothesis. Gene duplications, putative gene losses, and divergent allelic lineages detected in some APGs demonstrate considerable evolutionary dynamics of APGs in salamanders. Overall, our results indicate that if coevolution between APGs and MHC I occurred in urodeles, it would be more complex than envisaged in the original formulation of the hypothesis.


Asunto(s)
Proteínas Anfibias/genética , Presentación de Antígeno/genética , Evolución Molecular , Genes MHC Clase I , Urodelos/genética , Proteínas Anfibias/química , Proteínas Anfibias/clasificación , Animales , Duplicación de Gen , Ligamiento Genético , Urodelos/inmunología
15.
Mol Phylogenet Evol ; 155: 106967, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33031928

RESUMEN

Hybridization can leave genealogical signatures in an organism's genome, originating from the parental lineages and persisting over time. This potentially confounds phylogenetic inference methods that aim to represent evolution as a strictly bifurcating tree. We apply a phylotranscriptomic approach to study the evolutionary history of, and test for inter-lineage introgression in the Salamandridae, a Holarctic salamanders group of interest in studies of toxicity and aposematism, courtship behavior, and molecular evolution. Although the relationships between the 21 currently recognized salamandrid genera have been the subject of numerous molecular phylogenetic studies, some branches have remained controversial and sometimes affected by discordances between mitochondrial vs. nuclear trees. To resolve the phylogeny of this family, and understand the source of mito-nuclear discordance, we generated new transcriptomic (RNAseq) data for 20 salamandrids and used these along with published data, including 28 mitochondrial genomes, to obtain a comprehensive nuclear and mitochondrial perspective on salamandrid evolution. Our final phylotranscriptomic data set included 5455 gene alignments for 40 species representing 17 of the 21 salamandrid genera. Using concatenation and species-tree phylogenetic methods, we find (1) Salamandrina sister to the clade of the "True Salamanders" (consisting of Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), (2) Ichthyosaura sister to the Near Eastern genera Neurergus and Ommatotriton, (3) Triturus sister to Lissotriton, and (4) Cynops paraphyletic with respect to Paramesotriton and Pachytriton. Combining introgression tests and phylogenetic networks, we find evidence for introgression among taxa within the clades of "Modern Asian Newts" and "Modern European Newts". However, we could not unambiguously identify the number, position, and direction of introgressive events. Combining evidence from nuclear gene analysis with the observed mito-nuclear phylogenetic discordances, we hypothesize a scenario with hybridization and mitochondrial capture among ancestral lineages of (1) Lissotriton into Ichthyosaura and (2) Triturus into Calotriton, plus introgression of nuclear genes from Triturus into Lissotriton. Furthermore, both mitochondrial capture and nuclear introgression may have occurred among lineages assigned to Cynops. More comprehensive genomic data will, in the future, allow testing this against alternative scenarios involving hybridization with other, extinct lineages of newts.


Asunto(s)
Hibridación Genética , Filogenia , Urodelos/clasificación , Urodelos/genética , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Genoma Mitocondrial , Mitocondrias/genética , Transcriptoma/genética
16.
Mov Ecol ; 8: 35, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832090

RESUMEN

BACKGROUND: While goose populations worldwide benefit from food provided by farmland, China's threatened wintering goose populations have failed to capitalize on farmland. It has been proposed that, due to an exceptionally intense human pressure on Chinese farmland, geese cannot exploit farmland in their wintering sites and hence are confined to their deteriorating natural habitat. If this were true, locally decreasing this human pressure on farmland 'refuges' would represent a promising conservation measure. METHODS: We investigate habitat use of two declining migratory goose species in their core wintering (Yangtze River Floodplain) and stopover (Northeast China Plain) regions, compare the human pressure level at both regions, and adopt a mixed-effect resource selection function model to test how human pressure, food resource type (farmland or wetland/grass), distance to roosts, and their interaction terms influence the utilization of food resources for each species and region. To this aim we use satellite tracking of 28 tundra bean geese Anser serrirostris and 55 greater white-fronted geese A. albifrons, a newly produced 30 m land cover map, and the terrestrial human footprint map. RESULTS: Geese use farmland intensively at their stopover site, but hardly at their wintering site, though both regions have farmland available at a similar proportion. The human pressure on both farmland and wetland/grass is significantly lower at the stopover region compared to the wintering region. At both sites, the two goose species actively select for farmland and/or wetland/grass with a relatively low human pressure, positioned relatively close to their roosting sites. CONCLUSIONS: Our findings suggest that if human pressure were to decrease in the farmlands close to the roost, China's wintering geese could benefit from farmland. We recommend setting aside farmland near roosting sites that already experiences a relatively low human pressure as goose refuges, and adopt measures to further reduce human pressure and increase food quality and quantity, to help counter the decline of China's wintering goose populations. Our study has important conservation implications and offers a practical measure for migratory waterfowl conservation in areas of high human-wildlife conflict.

17.
Evolution ; 74(10): 2427-2428, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32815552

RESUMEN

Introgression, gene flow from one population into another, can be asymmetric. Yang et al. suggest that reduction of gene flow in one direction, rather than elevated gene flow in the opposite direction, explains the pattern of asymmetric introgression between two lizard lineages. The authors propose that a dominant male phenotype in one lineage blocks a submissive male phenotype from another lineage in mating with females of the opposite lineage. This case underscores just how capricious introgression can be.


Asunto(s)
Flujo Génico , Lagartos , Animales , Femenino , Lagartos/genética , Masculino , Reproducción , Aislamiento Reproductivo
19.
Sci Rep ; 10(1): 10289, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581236

RESUMEN

Lyme borreliosis (LB) is the archetypal emerging zoonosis and is dependent on transmission by ticks in the genus Ixodes. Understanding the origin, maintenance, and spread of these ticks contributes much to our understanding of the spread of LB and other disease agents borne by these ticks. We collected 1232 Ixodes scapularis ticks from 17 east coast sites ranging from New Hampshire to Florida and used mtDNA, three nuclear genetic loci, and incorporated Bayesian analyses to resolve geographically distinct tick populations and compare their demographic histories. A sparse, stable, and genetically diverse population of ticks in the Southeastern US, that is rarely infected with the agent of LB is genetically distinct from an abundant, expanding, and comparatively uniform population in the Northeast, where epidemic LB now constitutes the most important vector borne disease in the United States. The contrasting geography and demography of tick populations, interpreted in the context of the geological history of the region, suggests that during the last glacial period such ticks occupied distinct refugia, with only the northern-most site of refuge giving rise to those ticks and pathogens now fueling the epidemic.


Asunto(s)
Vectores Arácnidos/genética , Borrelia burgdorferi/aislamiento & purificación , Ixodes/genética , Enfermedad de Lyme/transmisión , Zoonosis/transmisión , Animales , Vectores Arácnidos/microbiología , Teorema de Bayes , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Ciervos/parasitología , Variación Genética , Geografía , Haplotipos , Humanos , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Filogenia , Estados Unidos , Zoonosis/microbiología
20.
Mol Ecol ; 28(13): 3257-3270, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31254307

RESUMEN

Cryptic phylogeographic diversifications provide unique models to examine the role of phylogenetic divergence on the evolution of reproductive isolation, without extrinsic factors such as ecological and behavioural differentiation. Yet, to date very few comparative studies have been attempted within such radiations. Here, we characterize a new speciation continuum in a group of widespread Eurasian amphibians, the Pelobates spadefoot toads, by conducting multilocus (restriction site associated DNA sequencing and mitochondrial DNA) phylogenetic, phylogeographic and hybrid zone analyses. Within the P. syriacus complex, we discovered species-level cryptic divergences (>5 million years ago [My]) between populations distributed in the Near-East (hereafter P. syriacus sensu stricto [s.s.]) and southeastern Europe (hereafter P. balcanicus), each featuring deep intraspecific lineages. Altogether, we could scale hybridizability to divergence time along six different stages, spanning from sympatry without gene flow (P. fuscus and P. balcanicus, >10 My), parapatry with highly restricted hybridization (P. balcanicus and P. syriacus s.s., >5 My), narrow hybrid zones (~15 km) consistent with partial reproductive isolation (P. fuscus and P. vespertinus, ~3 My), to extensive admixture between Pleistocene and refugial lineages (≤2 My). This full spectrum empirically supports a gradual build up of reproductive barriers through time, reversible up until a threshold that we estimate at ~3 My. Hence, cryptic phylogeographic lineages may fade away or become reproductively isolated species simply depending on the time they persist in allopatry, and without definite ecomorphological divergence.


Asunto(s)
Anuros/clasificación , Especiación Genética , Genética de Población , Aislamiento Reproductivo , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Europa (Continente) , Flujo Génico , Hibridación Genética , Medio Oriente , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...